My current research is funded by the Research for Innovation (REFIN) project of Regione Puglia No. D3DB80C1.
research interests
 Calculus of Variations
 \(\Gamma\)convergence and semicontinuity problems
 Applications to Fracture Mechanics and Materials Science
 Variational analysis of discrete spin systems
publications
All the preprint versions of my publications are available on my cvgmt or arXiv profiles.
 G. Dal Maso, G. Orlando, R. Toader. Laplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length. NoDEA Nonlinear Differential Equations Appl. 22 (2015), 449–476
 G. Dal Maso, G. Orlando, R. Toader. Fracture models for elastoplastic materials as limits of gradient damage models coupled with plasticity: the antiplane case. Calc. Var. Partial Differential Equations 55 (2016), Article no. 45
 G. Dal Maso, G. Orlando, R. Toader. Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv. Calc. Var. 10 (2017), 183–207
 V. Crismale, G. Lazzaroni, G. Orlando. Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue. Math. Models Methods Appl. Sci. 28 (2018), 1371–1412
 V. Crismale, G. Orlando. A Reshetnyaktype lower semicontinuity result for linearised elastoplasticity coupled with damage in \(W^{1,n}\). NoDEA Nonlinear differential Equations Appl. 25 (2018), Article no. 16
 R. Alessi, V. Crismale, G. Orlando. Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach. J. Nonlinear Sci. 29 (2019), 1041–1094
 M. Cicalese, M. Forster, G. Orlando. Variational Analysis of a TwoDimensional Frustrated Spin System: Emergence and Rigidity of Chirality Transitions. SIAM J. Math. Anal. 51 (2019), 4848–4893
 V. Crismale, G. Orlando. A lower semicontinuity result for linearised elastoplasticity coupled with damage in \(W^{1,\gamma}\), \(\gamma > 1\). Mathematics in Engineering 2 (2020), 101–118
 A. Bach, M. Cicalese, L. Kreutz, G. Orlando. The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling. Calculus of Variations and Partial Differential Equations 60 (2021), Article no. 149
 M. Cicalese, G. Orlando, M. Ruf. Coarse graining and largeN behavior of the ddimensional Nclock model. Interfaces Free Bound. 23 (2021), 323–351
 M. Cicalese, G. Orlando, M. Ruf. Emergence of concentration effects in the variational analysis of the Nclock model. Comm. Pure Appl. Math., to appear
 A. Bach, M. Cicalese, L. Kreutz, G. Orlando. The antiferromagnetic XY model on the triangular lattice: topological singularities. Indiana Univ. Mat. J., to appear
preprints
All the preprints are available on my cvgmt or arXiv profiles.

M. Cicalese, G. Orlando, M. Ruf. The Nclock model: Variational analysis for fast and slow divergence rates of N. Preprint (2021)

M. Cicalese, M. Forster, G. Orlando. Variational analysis of the \(J_1\)\(J_2\)\(J_3\) model: a nonlinear lattice version of the AvilesGiga functional. Preprint (2021)
collaborators
Gianni Dal Maso, Rodica Toader, Vito Crismale, Giuliano Lazzaroni, Roberto Alessi, Marco Cicalese, Matthias Ruf, Marwin Forster, Annika Bach, Leonard Kreutz